Go: syscalls and the scheduler
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Why should you spend the next 15 minutes
or so listening to me?
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- Understand how high level languages function under
the hood

- To become capable in understanding and debugging
your program

- And If you're curious In general



What are syscalls?

SYSCALLS(2) Linux Programmer's Manual SYSCALLS(2)
NAME top
syscalls — Linux system calls
SYNOPSIS top
Linux system calls.
DESCRIPTION top

The system call i1s the fundamental interface between an

application and the Linux kernel.
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How do | see syscalls?

strace
STRACE(1) General Commands Manual STRACE(1)
NAME
strace - trace system calls and signals
DESCRIPTION

In the simplest case strace runs the specified command until 1t exits.
It intercepts and records the system calls which are

called by a process and the signals which are received by a process.

dtruss (A handy Mac replacement)

dtruss(1m)
NAME

dtruss — process syscall details. Uses DTrace.
DESCRIPTION

dtruss prints details on process system calls. It is like a DTrace

version of truss, and has been designed to be less intrusive than truss.
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Coming back to Go
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package mailn

import (
il fmtll

func main() {
fmt.Println("Hello world!'")

L
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fune mainl) f
fwt.Printin("Hello world!™)
3

' sys call mnterfoce

hardwore
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Tracing syscalls
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PID/THRD SYSCALL(args) = return

Hello world!

16028/0x1d793: fork() =080

16028/0x1d793: access("/AppleInternal/XBS/.isChrooted\0

L ", 0x0, 0x0) = -1 Erri#2

16028/0x1a793:

L bsdthread_register(0x193D79084, ©x193D79078, 0x4000) =

L 1073742303 0

16028/0x1a793:

L bsdthread_create(0x1046644C0, 0x1400003C000, 0x16B883000)

L 1804087296 0

16028/0x1d793: __pthread_sigmask(@x3, 0x16B7FB6C8, 0x0) = 0 0
16028/0x1d796: fork() =00
16028/0x1d793:

L bsdthread create(0x1046644C0, 0x1400003C480, 0x16B90F000)

L 1804660736 0
16028/0x1d797: fork() =00

16028/0x1d793: sigreturn(0x14000009C18, Ox1E, 0x97346E51C6D2C79B)

L @ Err#-2

16028/0x1a797:

R bsdthread create(0x1046644C0, 0x14000080000, 0x16B99B000O) =
L 1805234176 0

16028/0x1d797: __pthread_sigmask(@x3, 0x16B90ECD8, 0x0) = 0 0
16028/0x1d793: madvise(0x1400005C000, 0x8000, 0x8) = 0 0
16028/0x1d798: fork() =00

16028/0x1d796:
16028/0x1d793:
16028/0x1d798:
16028/0x1d793:

L @

16028/0x1d798:
16028/0x1d797:
16028/0x1d798:
16028/0x1d798:
16028/0x1d793:
L bsdthread_create(0x1046644C0, 0x1400003C900, 0x16BA27000)
L 1805807616 @
16028/0x1d798:

16028/0x1d799:

028/0x1d793:

16028/0x1d796:
16028/0x1d793:

__semwait_signal(0x903, 0x0, 0x1)
mlock(0x14000060000, 0x4000, 0x0)
thread_selfid(0x@, 0x0, 0x0)

sigaltstack(0x@, O0x16B99AE70, 0x0)
__semwait_signal(0x903, 0x0, 0x1)
sigaltstack(0x16B99AE30, 0x0, 0x0)

write(@x1, "Hello world!\n\@", ©xD)
__semwait_signal(@x903, 0x0, 0x1)
kqueue (0x0, 0x0, 0x0)

120728 ©
__pthread_sigmask(0x3, 0x10472C1B0, 0x16B7FB588) = 0@

= =1 Err#60

__pthread_sigmask(@0x3, 0x16B99AE84, 0x0) = 0 @

psynch_cvsignal(0x1400003C820, 0x100, 0x0)
fork()

-1 Err#60

257 0

-1 Err#60



Why more than one thread for just printing "Hello world!"

mainStarted = true

if GOARCH != "wasm" {
newm(sysmon, nil, -1)
)
s

LlockOSThread ()
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- sysmon starts a new thread to run the system monitor.

- Also, the main thread is blocked by the go runtime and hence the Go
scheduler has to start a new thread.

- Other threads are needed for running the GC, timing etc.

- Quoting Go runtime

The GOMAXPROCS variable limits the number of operating system threads that can execute
user-level Go code simultaneously. There is no limit to the number of threads that can be
blocked in system calls on behalf of Go code; those do not count against the GOMAXPROCS

limit.
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package maln

import (
i1 fmtll
"runtime"

"runtime/pprof"

Number of logical CPUs 8
Number of 0S threads 5

Number of goroutines 1
Hello world!

func main() {
var threadProfile = pprof.Lookup ("
L threadcreate")
fmt.Printf ("Number of logical CPUs %d\n
L ", runtime.NumCPU())
fmt.Printf ("Number of 0S threads %d\n
L ", threadProfile.Count())
fmt.Printf ("Number of goroutines %d\n
L ", runtime.NumGoroutine())
fmt.Println("Hello world!")
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Diving into the Go scheduler

The scheduler's job is to distribute ready-to-run goroutines over

worker threads.
processor, resource that is required to execute worker thread, or goroutine

(Go code. machine.

LRQ GRQ
Local Run Queue, each P has its own to for goroutines that have not been
manage coroutines assigned to a P yet
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Scheduling paradigms

Work stealing

An underutilized processor actively looks for other processor’s threads and “steal” some.

Work sharing

When a processor generates new threads, it attempts to migrate some of them to the other

processors with the hopes of them being utilized by the idle/underutilized processors.
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global queue

local queue local queue

. POOO pOOOOOOO

func schedule() { nn nnn
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global queue (empty)

local queue / local queue (empty)
cannot find work:
l steals 3 Gs from P1

func rungsteal(_p _, p2 *xp, stealRunNextG nn

L bool) *g {
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Does this really happen?
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env GODEBUG=scheddetail=1,schedtrace=2 GOMAXPROCS=2 go run main.go

SCHED
L Oms: gomaxprocs=2 idleprocs=0 threads=5 spinningthreads=0 idlethreads=0 runqueue=0 gcwaiting=0 nmidlelocke
PO: status=1 schedtick=0 syscalltick=0 m=4 runqsize=0 gfreecnt=0 timerslen=0
P1l: status=1 schedtick=2 syscalltick=0 m=3 runqsize=0 gfreecnt=0 timerslen=0
M4 :
L p=0 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=true blocked=false lockedg=-1
M3:
L p=1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=-1
M2:
L p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=2 dying=0 spinning=false blocked=false lockedg=-1
Sl
L p=-1 curg=17 mallocing=0 throwing=0 preemptoff= locks=0 dying=0 spinning=false blocked=false lockedg=17
MO
L p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=1
Gl: status=1(chan receive) m=-1 lockedm=0
G17: status=6() m=1 lockedm=1
G2: status=4(force gc (idle)) m=-1 lockedm=-1
G3: status=4(GC sweep wait) m=-1 lockedm=-1 20



What does the future of syscalls look like?
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What happens right now?

- All UNIX 10 syscalls are synchronous and blocking

- For example, a program calls read(), goes to sleep until
the descriptor Is ready

- select() and kqueue wake processes so that they can go
and perform an action
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Program

Traditional async

select/kqueue

take action

read()

Kernel

wait

ready?

now?

We're doing this today right?

done

TAKE ACTION!!

Program

select/kqueue

Kernel

wapewith SWimlanes.io




10_uring

- 10_uring subsystem released in mainline kernel in 2019
- Solves for inherently synchronous Unix I/0

- Built around a ring buffer in memory shared between user
space and kernel

- Allows submission of operations and collection of results
asynchronously.
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Program

read()+action()

lo_uring

lo_uring

read()

Kernel

wait

ready?

now?

You too, seriously?

done

action()

RESULT

Program

io_uring

Kernel

wapewith SWimlanes.io




Questions?
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Thank you!
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