Go: syscalls and the scheduler

01



Rahul Tiwari

Software Engineer at Simpl

Backend Developer.
Can write Go and Python.

Loves football, FOSS, classical music and metacognition in the
order mentioned.

02



Why should you spend the next 15 minutes
or so listening to me?

03



- Understand how high level languages function under
the hood

- To become capable in understanding and debugging
your program

- And If you're curious In general



What are syscalls?

SYSCALLS(2) Linux Programmer's Manual SYSCALLS(2)
NAME top
syscalls — Linux system calls
SYNOPSIS top
Linux system calls.
DESCRIPTION top

The system call i1s the fundamental interface between an

application and the Linux kernel.

05



How do | see syscalls?

strace
STRACE(1) General Commands Manual STRACE(1)
NAME
strace - trace system calls and signals
DESCRIPTION

In the simplest case strace runs the specified command until 1t exits.
It intercepts and records the system calls which are

called by a process and the signals which are received by a process.

dtruss (A handy Mac replacement)

dtruss(1m)
NAME

dtruss — process syscall details. Uses DTrace.
DESCRIPTION

dtruss prints details on process system calls. It is like a DTrace

version of truss, and has been designed to be less intrusive than truss.

06



Coming back to Go

07



package mailn

import (
il fmtll

func main() {
fmt.Println("Hello world!'")

L

08



fune mainl) f
fwt.Printin("Hello world!™)
3

' sys call mnterfoce

hardwore

09



Tracing syscalls

10



PID/THRD SYSCALL(args) = return

Hello world!

16028/0x1d793: fork() =080

16028/0x1d793: access("/AppleInternal/XBS/.isChrooted\0

L ", 0x0, 0x0) = -1 Erri#2

16028/0x1a793:

L bsdthread_register(0x193D79084, ©x193D79078, 0x4000) =

L 1073742303 0

16028/0x1a793:

L bsdthread_create(0x1046644C0, 0x1400003C000, 0x16B883000)

L 1804087296 0

16028/0x1d793: __pthread_sigmask(@x3, 0x16B7FB6C8, 0x0) = 0 0
16028/0x1d796: fork() =00
16028/0x1d793:

L bsdthread create(0x1046644C0, 0x1400003C480, 0x16B90F000)

L 1804660736 0
16028/0x1d797: fork() =00

16028/0x1d793: sigreturn(0x14000009C18, Ox1E, 0x97346E51C6D2C79B)

L @ Err#-2

16028/0x1a797:

R bsdthread create(0x1046644C0, 0x14000080000, 0x16B99B000O) =
L 1805234176 0

16028/0x1d797: __pthread_sigmask(@x3, 0x16B90ECD8, 0x0) = 0 0
16028/0x1d793: madvise(0x1400005C000, 0x8000, 0x8) = 0 0
16028/0x1d798: fork() =00

16028/0x1d796:
16028/0x1d793:
16028/0x1d798:
16028/0x1d793:

L @

16028/0x1d798:
16028/0x1d797:
16028/0x1d798:
16028/0x1d798:
16028/0x1d793:
L bsdthread_create(0x1046644C0, 0x1400003C900, 0x16BA27000)
L 1805807616 @
16028/0x1d798:

16028/0x1d799:

028/0x1d793:

16028/0x1d796:
16028/0x1d793:

__semwait_signal(0x903, 0x0, 0x1)
mlock(0x14000060000, 0x4000, 0x0)
thread_selfid(0x@, 0x0, 0x0)

sigaltstack(0x@, O0x16B99AE70, 0x0)
__semwait_signal(0x903, 0x0, 0x1)
sigaltstack(0x16B99AE30, 0x0, 0x0)

write(@x1, "Hello world!\n\@", ©xD)
__semwait_signal(@x903, 0x0, 0x1)
kqueue (0x0, 0x0, 0x0)

120728 ©
__pthread_sigmask(0x3, 0x10472C1B0, 0x16B7FB588) = 0@

= =1 Err#60

__pthread_sigmask(@0x3, 0x16B99AE84, 0x0) = 0 @

psynch_cvsignal(0x1400003C820, 0x100, 0x0)
fork()

-1 Err#60

257 0

-1 Err#60



Why more than one thread for just printing "Hello world!"

mainStarted = true

if GOARCH != "wasm" {
newm(sysmon, nil, -1)
)
s

LlockOSThread ()

12



- sysmon starts a new thread to run the system monitor.

- Also, the main thread is blocked by the go runtime and hence the Go
scheduler has to start a new thread.

- Other threads are needed for running the GC, timing etc.

- Quoting Go runtime

The GOMAXPROCS variable limits the number of operating system threads that can execute
user-level Go code simultaneously. There is no limit to the number of threads that can be
blocked in system calls on behalf of Go code; those do not count against the GOMAXPROCS

limit.

13



package maln

import (
i1 fmtll
"runtime"

"runtime/pprof"

Number of logical CPUs 8
Number of 0S threads 5

Number of goroutines 1
Hello world!

func main() {
var threadProfile = pprof.Lookup ("
L threadcreate")
fmt.Printf ("Number of logical CPUs %d\n
L ", runtime.NumCPU())
fmt.Printf ("Number of 0S threads %d\n
L ", threadProfile.Count())
fmt.Printf ("Number of goroutines %d\n
L ", runtime.NumGoroutine())
fmt.Println("Hello world!")

b 14



Diving into the Go scheduler

The scheduler's job is to distribute ready-to-run goroutines over

worker threads.
processor, resource that is required to execute worker thread, or goroutine

(Go code. machine.

LRQ GRQ
Local Run Queue, each P has its own to for goroutines that have not been
manage coroutines assigned to a P yet

15



Scheduling paradigms

Work stealing

An underutilized processor actively looks for other processor’s threads and “steal” some.

Work sharing

When a processor generates new threads, it attempts to migrate some of them to the other

processors with the hopes of them being utilized by the idle/underutilized processors.

16



global queue

local queue local queue

. POOO pOOOOOOO

func schedule() { nn nnn

17



global queue (empty)

local queue / local queue (empty)
cannot find work:
l steals 3 Gs from P1

func rungsteal(_p _, p2 *xp, stealRunNextG nn

L bool) *g {

18



Does this really happen?

19



env GODEBUG=scheddetail=1,schedtrace=2 GOMAXPROCS=2 go run main.go

SCHED
L Oms: gomaxprocs=2 idleprocs=0 threads=5 spinningthreads=0 idlethreads=0 runqueue=0 gcwaiting=0 nmidlelocke
PO: status=1 schedtick=0 syscalltick=0 m=4 runqsize=0 gfreecnt=0 timerslen=0
P1l: status=1 schedtick=2 syscalltick=0 m=3 runqsize=0 gfreecnt=0 timerslen=0
M4 :
L p=0 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=true blocked=false lockedg=-1
M3:
L p=1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=-1
M2:
L p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=2 dying=0 spinning=false blocked=false lockedg=-1
Sl
L p=-1 curg=17 mallocing=0 throwing=0 preemptoff= locks=0 dying=0 spinning=false blocked=false lockedg=17
MO
L p=-1 curg=-1 mallocing=0 throwing=0 preemptoff= locks=1 dying=0 spinning=false blocked=false lockedg=1
Gl: status=1(chan receive) m=-1 lockedm=0
G17: status=6() m=1 lockedm=1
G2: status=4(force gc (idle)) m=-1 lockedm=-1
G3: status=4(GC sweep wait) m=-1 lockedm=-1 20



What does the future of syscalls look like?

21



What happens right now?

- All UNIX 10 syscalls are synchronous and blocking

- For example, a program calls read(), goes to sleep until
the descriptor Is ready

- select() and kqueue wake processes so that they can go
and perform an action

22



Program

Traditional async

select/kqueue

take action

read()

Kernel

wait

ready?

now?

We're doing this today right?

done

TAKE ACTION!!

Program

select/kqueue

Kernel

wapewith SWimlanes.io




10_uring

- 10_uring subsystem released in mainline kernel in 2019
- Solves for inherently synchronous Unix I/0

- Built around a ring buffer in memory shared between user
space and kernel

- Allows submission of operations and collection of results
asynchronously.

24



Program

read()+action()

lo_uring

lo_uring

read()

Kernel

wait

ready?

now?

You too, seriously?

done

action()

RESULT

Program

io_uring

Kernel

wapewith SWimlanes.io




Questions?

26



Thank you!

27



